4,081 research outputs found

    Radiation shielding calculations for MuCool Test Area at Fermilab

    Full text link
    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this shielding study the results of Monte Carlo radiation shielding calculations performed using the MARS14 code for the MuCool Test Area and including the downstream portion of the target hall and berm around it, access pit, service building, and parking lot are presented and discussed within the context of the proposed MTA experimental configuration.Comment: 17 pages, 13 figure

    The cuticle

    Get PDF
    The nematode cuticle is an extremely flexible and resilient exoskeleton that permits locomotion via attachment to muscle, confers environmental protection and allows growth by molting. It is synthesised five times, once in the embryo and subsequently at the end of each larval stage prior to molting. It is a highly structured extra-cellular matrix (ECM), composed predominantly of cross-linked collagens, additional insoluble proteins termed cuticlins, associated glycoproteins and lipids. The cuticle collagens are encoded by a large gene family that are subject to strict patterns of temporal regulation. Cuticle collagen biosynthesis involves numerous co- and post-translational modification, processing, secretion and cross-linking steps that in turn are catalysed by specific enzymes and chaperones. Mutations in individual collagen genes and their biosynthetic pathway components can result in a range of defects from abnormal morphology (dumpy and blister) to embryonic and larval death, confirming an essential role for this structure and highlighting its potential as an ECM experimental model system

    Stellar Winds on the Main-Sequence II: the Evolution of Rotation and Winds

    Full text link
    Aims: We study the evolution of stellar rotation and wind properties for low-mass main-sequence stars. Our aim is to use rotational evolution models to constrain the mass loss rates in stellar winds and to predict how their properties evolve with time on the main-sequence. Methods: We construct a rotational evolution model that is driven by observed rotational distributions of young stellar clusters. Fitting the free parameters in our model allows us to predict how wind mass loss rate depends on stellar mass, radius, and rotation. We couple the results to the wind model developed in Paper I of this series to predict how wind properties evolve on the main-sequence. Results: We estimate that wind mass loss rate scales with stellar parameters as M˙R2Ω1.33M3.36\dot{M}_\star \propto R_\star^2 \Omega_\star^{1.33} M_\star^{-3.36}. We estimate that at young ages, the solar wind likely had a mass loss rate that is an order of magnitude higher than that of the current solar wind. This leads to the wind having a higher density at younger ages; however, the magnitude of this change depends strongly on how we scale wind temperature. Due to the spread in rotation rates, young stars show a large range of wind properties at a given age. This spread in wind properties disappears as the stars age. Conclusions: There is a large uncertainty in our knowledge of the evolution of stellar winds on the main-sequence, due both to our lack of knowledge of stellar winds and the large spread in rotation rates at young ages. Given the sensitivity of planetary atmospheres to stellar wind and radiation conditions, these uncertainties can be significant for our understanding of the evolution of planetary environments.Comment: 26 pages, 14 figures, 2 tables, to be published in A&

    Space use by passerine birds : a study of territory economics in robins Erithacus rubecula and dippers Cinclus cinclus

    Get PDF
    1. Cost constraints in models of territory size are based on time/activity/laboratory estimates that predict birds using larger territories will incur higher energy costs. The predicted form of the cost constraint may be linear, accelerating or decelerating depending on assumptions inherent in the models. The aim of this study was to assess the reality and form of the cost constraint by making direct measurements of the energy costs of territory use in birds that occupy territories of different size and shape; polygonal territories represented by the robin Erithacus rubecula, and linear by the dipper Cinclus cinclus. Free-living energy expenditure was measured using the doubly-labelled water technique, whilst simultaneously recording patterns of territory use by radio-tracking. 2. Territorial robins concentrated their activity in one or more foraging patches located in bushes. Range polygons containing all the foraging patches used by an individual provided estimates of territory area, and were generally of high eccentricity. A small proportion of robins was classified as non-territorial based on range polygon areas. Furthermore, while territorial robins showed high fidelity to ranges over the short term (days), non-territorial individuals were nomadic. Over the longer term (months), however, some territorial robins showed range drift. Dippers similarly used preferred core regions within ranges, although there was no selection for particular habitat features. 3. Because robins occupied territory polygons which varied from polygonal to highly linear, work was focused on this species to allow intra-specific comparison. Robins tended to commute between foraging patches by flying. It was appropriate, therefore, to describe territories in terms of a number of patches linked by a network of flight paths. This generated two further measures of territory size; the number of patches used and the total flight distance between patches. 4. The robins exploited a renewing food supply. Predictions were tested concerning the temporal scheduling of visits to foraging patches within territories. Patches tended to be separated by flight paths of similar lengths, and were visited in a regular sequence. Although the number of foraging patches used varied, all territories had similar total core areas. Robins using many small foraging patches commuted between patches more often and covered a larger total flight distance during each foraging circuit of the territory. The configurations of foraging patches were used in a highly linear manner. This was true even if the territory containing them was of low eccentricity. 5. Changes in structure and pattern of use varied predictably with territory size, and could be described mathematically. Based on this and published time/activity budgets, a suite of models was developed to predict how energy costs would vary with number of patches used and total flight distance between patches. Models were tested by directly measuring the energy expenditure of robins using different territories. The number of patches used and total flight distance between patches were both significantly correlated with energy expenditure, while territory area was not. One of the models showed a significant fit to the observed data, and suggested that the form of the energy cost constraint on territory size was linear. The effect of territory shape on energy costs was minimal. The implications of these results for models of territory size are discussed. 6. The slope and elevation of the energy cost constraint varied with the morphology of territory occupants. Based on this, an association of morphology with territory size was predicted; robins of lower mass and wing-loading using larger territories. The observed data supported these predictions, and suggested a possible genetic predisposition to particular patterns of territory occupancy in the robin

    Stellar Winds on the Main-Sequence I: Wind Model

    Full text link
    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run a grid of 1200 wind models to derive relations for the wind properties as a function of stellar mass, radius, and wind temperature. Using these results, we explore how wind properties depend on stellar mass and rotation. Conclusions: Based on our two assumptions about the scaling of the wind temperature, we argue that there is still significant uncertainty in how these properties should be determined. Resolution of this uncertainty will probably require both the application of solar wind physics to other stars and detailed observational constraints on the properties of stellar winds. In the final section of this paper, we give step by step instructions for how to apply our results to calculate the stellar wind conditions far from the stellar surface.Comment: 24 pages, 13 figures, 2 tables, Accepted for publication in A&

    Testing in High-Dimensional Spiked Models

    Get PDF
    We consider the five classes of multivariate statistical problems identified by James (1964), which together cover much of classical multivariate analysis, plus a simpler limiting case, symmetric matrix denoising. Each of James' problems involves the eigenvalues of {code} where H and E are proportional to high dimensional Wishart matrices. Under the null hypothesis, both Wisharts are central with identity covariance. Under the alternative, the non-centrality or the covariance parameter of H has a single eigenvalue, a spike, that stands alone. When the spike is smaller than a case-specific phase transition threshold, none of the sample eigenvalues separate from the bulk, making the testing problem challenging. Using a unified strategy for the six cases, we show that the log likelihood ratio processes parameterized by the value of the sub-critical spike converge to Gaussian processes with logarithmic correlation. We then derive asymptotic power envelopes for tests for the presence of a spike

    A multi-criteria performance study of an integrated demand/supply energy system for low and zero carbon technologies within domestic building design

    Get PDF
    When low carbon and renewable energy (RE) systems are adopted in a building, matching the outputs from RE systems (e.g. photovoltaic, solar collectors, small scale wind turbines and heat pumps) to demand has to be taken into account to fully realise the potential of the hybrid energy system. Considering the varying demand profiles due to different building design options (e.g. orientation, construction types etc), it is necessary to evaluate key technology elements in an integrated context and establish appropriate strategies for simultaneously meeting heating and electricity loads as well as matching demand and supply. This paper presents a new approach to evaluate the interactive effects of low carbon technologies and demand reduction measures in the early design stage of a new building. A case study of a sustainable domestic building project (PLUS 50), was implemented on the basis of the proposed design approach

    High-Dimensional Inference with the generalized Hopfield Model: Principal Component Analysis and Corrections

    Get PDF
    We consider the problem of inferring the interactions between a set of N binary variables from the knowledge of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special case of the Ising model where the interaction matrix is defined through a set of patterns in the variable space, and is of rank much smaller than N. We show that Maximum Lik elihood inference is deeply related to Principal Component Analysis when the amp litude of the pattern components, xi, is negligible compared to N^1/2. Using techniques from statistical mechanics, we calculate the corrections to the patterns to the first order in xi/N^1/2. We stress that it is important to generalize the Hopfield model and include both attractive and repulsive patterns, to correctly infer networks with sparse and strong interactions. We present a simple geometrical criterion to decide how many attractive and repulsive patterns should be considered as a function of the sampling noise. We moreover discuss how many sampled configurations are required for a good inference, as a function of the system size, N and of the amplitude, xi. The inference approach is illustrated on synthetic and biological data.Comment: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics (2011) to appea

    Viscous diffusion and photoevaporation of stellar disks

    Get PDF
    The evolution of a stellar disk under the influence of viscous evolution, photoevaporation from the central source, and photoevaporation by external stars is studied. We take the typical parameters of TTSs and the Trapezium Cluster conditions. The photoionizing flux from the central source is assumed to arise both from the quiescent star and accretion shocks at the base of stellar magnetospheric columns, along which material from the disk accretes. The accretion flux is calculated self-consistently from the accretion mass loss rate. We find that the disk cannot be entirely removed using only viscous evolution and photoionization from the disk-star accretion shock. However, when FUV photoevaporation by external massive stars is included the disk is removed in 10^6 -10^7yr; and when EUV photoevaporation by external massive stars is included the disk is removed in 10^5 - 10^6yr. An intriguing feature of photoevaporation by the central star is the formation of a gap in the disk at late stages of the disk evolution. As the gap starts forming, viscous spreading and photoevaporation work in resonance. There is no gap formation for disks nearby external massive stars because the outer annuli are quickly removed by the dominant EUV flux. On the other hand, at larger, more typical distances (d>>0.03pc) from the external stars the flux is FUV dominated. As a consequence, the disk is efficiently evaporated at two different locations; forming a gap during the last stages of the disk evolution.Comment: 27 pages, 11 figures, accepted for publication in Ap
    corecore